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Abbreviations 

ACSF    artificial cerebrospinal fluid solution 
AD    Alzheimer’s disease 
BBB    blood-brain barrier 
CNS    central nervous system 
CSF    cerebrospinal fluid 
EAA    excitatory amino acid 
fEPSPs field excitatory postsynaptic potentials 
FJ+    Fluoro Jade B® positive 
GABA    γ-aminobutyric acid 
G-KYNA   glucoseamine-KYNA 
HD    Huntington’s disease 
HFS    high-frequency stimulation 
3-HK    3-hydroxykynurenine 
IO    input-output 
i.p.    intraperitoneally 
KATs    kynurenine aminotransferases 
KP    kynurenine pathway 
KYNA    kynurenic acid 
L-KYN    L-kynurenine 
L-KYN+PROB-4VO  L-KYN + PROB pre-treated animals 
LTP    long-term potentiation 
MRPs multidrug resistance-associated proteins 
MS    Multiple sclerosis 
NeuN    anti-neuronal nuclei 
NMDA    N-methyl-D-aspartate 
PD    Parkinson’s disease 
PROB    probenecid 
PTZ    pentylenetetrazole 
QUIN    quinolinic acid 
SC    sham-operated controls 
TRP    L-trypthophan 
4VO    4-vessel occlusion 
4VO-L-KYN+PROB  L-KYN + PROB post-treated animals 
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INTRODUCTION 

L-tryptophan (TRP), one of the ten essential amino acids, is involved in protein 

synthesis and acts as a precursor of many biologically active substances. Besides its 

participation in the process of protein synthesis, in mammals TRP is metabolized in several 

pathways. The most commonly known is the serotonergic pathway, which is active in 

platelets and neurons, and yields 5-hydroxy-TRP and then serotonin. TRP is also the 

precursor of a pineal hormone, melatonin. A less well-known, but actually the main 

alternative route for the TRP metabolism, is through the kynurenine pathway (KP), a cascade 

of enzymatic steps involving a number of biologically active compounds. It is noticeable that 

95% of the TRP is catabolised through the KP within the brain. The metabolites of the KP, 

collectively termed ’kynurenines’, have been shown to take part in many diverse 

physiological and pathological processes. In particular, fluctuations in the levels of the 

kynurenines have discrete effects on the nervous and immune systems. Although a century 

has passed since the kynurenines were first recognized as major catabolic products of TRP, 

very little attention was paid to their possible involvement in biological processes until the 

1980s. 

The first KP metabolite of TRP, which was recognized as being neuroactive at the 

cellular level, was quinolinic acid (QUIN). This compound depolarises neurons by activating 

N-methyl-D-aspartate (NMDA) receptors. As a result, it is also able to produce excitotoxicity, 

and this realisation has led to QUIN being implicated in a variety of central nervous system 

(CNS) disorders. 

The other important metabolite of KP is kynurenic acid (KYNA), which is one of 

the few known endogenous broad-spectrum antagonists of excitatory amino acid (EAA) 

receptors, especially the NMDA receptors. Kynurenic acid has been suggested to be involved 

in the pathophysiology of several brain disorders, including Parkinson’s disease (PD), 

Huntington’s disease (HD), Multiple sclerosis (MS), Alzheimer’s disease (AD), stroke and 

epilepsy. In addition, accumulated data indicate that massively released excitatory amino 

acids play a major role in mediating the acute ischemic neuronal degeneration. Thus, one of 

the outstanding debates in the kynurenine field is, whether manipulation of the kynurenine 

pathway can modify the levels of kynurenic acid sufficiently to antagonize excitatory amino 

acid receptors. KYNA displays a particularly high affinity for the NMDA receptor, however, 

its therapeutic use is rather restricted, because KYNA has a very limited abilty to cross the 

blood-brain barrier. 
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L-kynurenine (L-KYN), a major component of the KP, serves as a source for the 

synthesis of all the other metabolites of the pathway. L-KYN is present in micromolar 

concentrations in the blood, brain and peripheral organs, and is transported through the blood-

brain barrier (BBB) by the neutral amino acid carrier. L-KYN is further metabolized in three 

distinct ways. It serves as a substrate for kynureninase, for kynurenine aminotransferases 

(KATs) and for kynurenine-3-hydroxylase yielding, respectively, anthranilic acid, KYNA and 

3-hydroxykynurenine (3-HK). 

In the mammalian brain, KYNA is produced irreversibly from L-KYN by the action 

of the KATs, which are able to catalyse the transamination of L-KYN in vitro. Since 

excitatory amino acid receptor activation takes place in a variety of pathological states, 

KYNA has been tested as a neuroprotective agent. 

Changes in the absolute and relative concentrations of the compounds involved in 

the KYN pathway (in particular KYNA and QUIN) in the brain have been implicated in a 

great number of neurodegenerative disorders, for example, stroke, epilepsy, ischemia, AD, 

HD, PD, MS and encephalopathies. Both agents are able to act on the NMDA-receptor 

complex and influence the glutamatergic transmission. Elucidation of the importance of the 

KP in the brain function has facilitated research relating to the alterations in the KP in various 

neurological disorders. 

Hereinafter, we focused on epilepsy and ischemia from the above mentioned 

neurological disorders, because the accepted models of these two diseases were used in our 

works. 

Epilepsy is one of the most common neurological disorders affecting 0.5-2% of the 

world’s population. It varies widely in type and severity of seizures and should not be 

considered as a single disorder. It is currently defined as ‘a tendency to have unprovoked 

recurrent seizures’. Epilepsy can result from brain injury caused by head trauma, stroke or 

infection, but in 6 out of 10 people seizures have no known cause. Seizures are the result of 

excessive neuronal firing temporarily disrupting neuronal signalling. This aberrant brain 

activity is the result of a shift in the balance between excitation and inhibition created by ion 

channels. In this context, it has been hypothesized that seizures and epileptogenesis may be 

due to either over-activation of excitatory pathways, utilizing glutamate or other excitatory 

amino acids, and/or a lesser activity of inhibitory pathways utilizing γ-aminobutyric acid 

(GABA) and other inhibitory neurotransmitters. 
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Pentylenetetrazole (PTZ), a chemical convulsant frequently utilized in the study of 

seizures, exerts its effects by binding to the picrotoxin-binding site of the post-synaptic 

GABA-A receptor. PTZ is known to suppress the inhibitory effects of certain 

neurotransmitters, and especially GABA, thereby leading to an easier depolarization of the 

neurons. 

Glutamate receptors, especially NMDA receptors, are logical targets for new 

antiepileptic compounds. Unfortunately, early attempts at attenuating the function of these 

receptors by using conventional NMDA-receptor antagonists revealed serious side effects. For 

reasons that are not fully understood, these harmful consequences of direct NMDA-receptor 

blockade can be avoided by targeting the glycine co-agonist (glycineB) site on the receptor for 

seizure suppression. Since glutamatergic neurotransmission plays a pivotal role in the 

pathogenesis of epilepsy, therefore antagonists of glutamate receptors are powerful 

anticonvulsants. In line with this, L-KYN, KYNA and their synthetic analogues are generally 

efficacious anticonvulsants in a variety of models of experimental epilepsy. 

Stroke is the third major cause of death in the major industrialized countries after 

cardiovascular disease and cancer. The overall incidence of stroke is predicted to increase 

over the next decade by 12% but by around 20% in low-income families. Patients 

experiencing a typical large-vessel acute ischemic stroke will lose 120 million neurons, 830 

billion synapses and 714 km of myelinated fibres each hour. Compared with the normal rate 

of neuron loss during aging, the ischemic brain will age 3.6 years for every hour the stroke 

goes untreated. The large majority (85%) of strokes in the western world are ischemic, that is, 

a stroke resulting from an occlusion of a major cerebral artery, commonly the middle cerebral 

artery (MCA) by a thrombus or embolism. The other strokes are hemorrhagic, where a blood 

vessel bursts either in the brain or on its surface. Ischemic brain injury results from a complex 

sequence of pathophysiological events that evolve over time and space. The major 

pathogenetic mechanisms of this cascade include excitotoxicity, peri-infarct depolarization 

and inflammation leading to cell death by apoptosis and necrosis. The main therapeutic 

approaches in patients with acute cerebral ischemia are thrombolysis and neuroprotection but 

none of them is really satisfying. Thrombolysis, which is aimed at restoring the cerebral blood 

flow, is restricted to few patients because of a narrow therapeutic window and a high 

hemorrhagic risk. 

Transient global ischemia, which may arise during cardiac arrest and surgery in 

humans or be induced experimentally in animals, elicits selective, delayed neuronal death. If 
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the ischemia is short, neuronal damage occurs only in vulnerable areas. The pyramidal 

neurons in the hippocampal CA1 region are particularly vulnerable. Animal models of 

transient global ischemia, including bilateral carotid artery occlusion in Mongolian gerbils 

and 4-vessel occlusion (4VO) in rats, have demonstrated significant neuronal necrosis in the 

CA1 region of the hippocampus and impairments in a variety of learning and memory tasks. 

Other neurons, such as the hippocampal CA3 neurons, are less ischemia-vulnerable. It is 

widely accepted that activation of the EAA receptors plays an important role in neuronal 

death in stroke. It has recently been reported that glutamate-induced excitotoxicity and 

cellular calcium overload are among the key factors of cell death in brain ischemia, especially 

in the grey matter. In turn, neuroprotective strategies have utilized antagonists of the 

glutamate receptors to prevent excitotoxic neuronal loss. 

Long-term potentiation (LTP), also mediated by glutamate receptors is a model of 

neuronal plasticity. Accordingly, ischemia may likewise impair physiological forms of 

synaptic plasticity, such as activity-dependent LTP. What is more, global ischemia may 

induce a special form of plasticity, anoxic LTP. 

Impairments of the KP are strongly involved in neuronal death in various disorders. 

Prevention or correction of the abnormality, which results from changes in the levels of L-

KYN derivatives, could attenuate the pathological processes. 

At the moment, there appear to be three different possibilities for the development 

of therapeutic agents with the aim of modulation of the KP. One strategy is to use L-KYN as a 

precursor of neuroprotective KYNA. L-KYN can cross the BBB and increase the level of 

KYNA in the CNS. The second approach is to develop different pro-drugs and analogues of 

KYNA that can easily cross the BBB and act on the glycine-binding site of the NMDA 

receptors. The third method is manipulation of the KP by administration compounds that 

block the metabolism of L-KYN � QUIN conversion. 

The following aims were set during our work on this topic: 

To investigate 

• whether L-KYN, which is able to cross easily the BBB by a neutral amino acid 

carrier and can be transformed into neuroprotective KYNA in the brain, can act 

against the acute PTZ-induced epileptic seizures? 

• whether L-KYN administered intraperitoneally (i.p.) together with probenecid 

(PROB), (PROB is known to inhibit several transporters; among those are the 

multidrug resistance-associated proteins (MRPs), which act as organic anion 
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transporters), can be more effective than L-KYN administered alone and whether 

they are able to protect against the neurotoxic effect of PTZ? 

• whether systemic pre- or post-treatment with L-KYN (administered together with 

PROB; i.p.) decreases the delayed cortical and hippocampal neuronal damage in 

rats subjected to transient global ischemia (4VO model)? 

• whether our newly synthetized KYNA analogue glucoseamine-KYNA (G-KYNA) 

can readily pass into the brain after systemic administration (alone or together with 

PROB; i.p.) and can be more effective than KYNA? 

MATERIALS AND METHODS 

Animals 

Our studies were performed on adult male Wistar rats (n=235, 250-300g) 

maintained under controlled environmental conditions at a temperature of 22±2 ˚C and 12-h 

light/dark cycle. Food and water were available ad libitum. Every effort was made to 

minimize animal suffering. The principles of laboratory animal care (NIH publication No. 85-

23), and the protocol for animal care approved by the European Communities Council 

Directive of 24 November 1986 (86/609/EEC) were followed. In the in vivo 

electrophysiological experiments the summarized number of animals was 107, while 18 rats 

were used in in vitro electrophysiology. The number of animals starting the behavioural tests 

was n = 50. In the histological evaluation the summarized number of rats was 50, while 10 

animals were used in the HPLC-MS/MS analysis. 

Drugs 

L-KYN (300 mg/kg; i.p.), PROB (200 mg/kg; i.p.), PTZ (60 mg/kg i.p.) and KYNA 

(17 µmol/kg) were obtained from Sigma (Steinheim, Germany), while our new compound G-

KYNA (17 µmol/kg) (Fig. 3) was synthetized in the Institute of Medical Chemistry, 

University of Szeged. L-KYN, KYNA, G-KYNA and PROB was dissolved in 0.1 M sodium 

hydroxide (1ml) and adjusted with 1 M sodium hydroxide to pH 7.4. 

In vivo electrophysiology 

 In the in vivo electrophysiologycal experiments we stimulated the CA3 area of the 

hippocampus and we recorded the hippocampal activity of contralateral CA1 area (rats were 

anaesthetized with urethane [1.3 g/kg, i.p.]). For recordings in area CA1, a 2-3 mm diameter 

hole was drilled over the dorsal hippocampus (3.0-3.8 mm posterior and 1.8-2.3 mm lateral to 

the sagittal suture) and the recording electrode was lowered 3.3 mm from the cortical surface. 
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Contralaterally, a 1-2 mm hole was drilled for the CA3 stimulating electrode (3.7 mm 

posterior to the bregma, and 3.3 mm lateral to the sagittal suture: final electrode depth 3.8 mm 

below the dura). Electrodes were lowered and final positions were adjusted so that the 

maximum CA1 population spike was obtained in response to contralateral CA3 stimulation. 

Responses to a range of stimulus intensities were recorded under control conditions to 

produce an input-output curve by changing the duration (10-100 µs), using current (up to 200 

µA) square pulses. Stimuli were triggered at low frequency (0.05 Hz). Response stability was 

monitored for 30 min prior to drug administration. The electrophysilological recording 

continued during the following 3h recording period after drug administration. 

Drug administration: On the basis of the literature data and our pilot experiments on the dose-

dependent effects of these compounds, throughout the main studies L-KYN was administered 

in a dose of 300 mg/kg, PROB in a dose of 200 mg/kg, and PTZ in a dose of 60 mg/kg. After 

the pilot experiments in which the effects of the pure drugs were observed, we studied 

whether L-KYN+PROB inhibited the effects of PTZ. In these electrophysiological studies, 

the responses of area CA1 pyramidal cells to contralateral CA3 stimulation were tested for a 

30-min control period. L-KYN and PROB administration followed. During the next 2 h, the 

low-frequency stimulation continued without recording, and PTZ was then administered. The 

electrophysiological effect was followed during a 3-h recording period. 

Behavioural studies 

In parallel with the in vivo electrophysiological experiments, behavioural studies 

were carried out on behaving animals. The behavioural effects of our neuroprotective 

compounds were studied in the water-maze and open-field tests. We were waiting 20 minutes 

after the treatments and began to do the water-maze performance. This examination was 

performed on five successive days. The open-field test was achieved on another day. From 

these results, we can conclude about the spatial learning, general locomotion and stereotype 

behaviour of the animals. 

Four-vessel occlusion (4VO) model of transient global ischemia and drug treatment 

 The rats were anaesthetized with Nembutal (CEVA-PHYLAXIA; 60 mg/kg, i.p.). 

Both vertebral arteries were occluded by cauterization during careful cooling with iced 

washing. The wound were then closed, and the animals were allowed to recover for 24 h. On 

the following day, they were subjected to a 10-min forebrain ischemia by bilateral occlusion 

of the carotid arteries with atraumatic clips under ether anaesthesia. The body temperature 
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was monitored, and maintained at 37 ˚C during the surgical procedures, using a 

thermostatically controlled heating pad. Both vertebral arteries were cauterised, and both 

common carotid arteries were exposed, but not occluded in the sham-operated animals. 

The rats used for cortical histology were divided into 5 groups: the group of control 

animals (n=5), which contain intact controls (IC) and sham-operated controls (SC); the 4VO 

group (4VO, n=7), the L-KYN + PROB pre-treated animals (L-KYN+PROB-4VO, n=6) and 

the L-KYN + PROB post-treated animals (4VO-L-KYN+PROB, n=7). 

The rats used for hippocampal histology were divided into 4 groups: SC group 

(n=5), 4VO group (n=7), L-KYN+PROB-4VO group (n=6) and 4VO-L-KYN+PROB goup 

(n=7). 

The rats used for in vitro electrophysiology were divided into 3 groups: SC group 

(n=6), 4VO group (n=6) and L-KYN+PROB-4VO group (n=6). 

Drug administration: L-KYN (300 mg/kg, i.p.) and PROB (200 mg/kg, i.p.) were 

administered daily for 5 days: in the pre-treated group, the first L-KYN+PROB administration 

preceded the 10-min carotid occlusion by 2 h; and the animals were treated at the same time 

on the next 4 days. In the post-treated group, the animals received the first L-KYN+PROB 

injection at the start of reperfusion. The remaining 4 injections were given at the same time on 

the next 4 days. 

Histological procedures 

 Ten days after 4VO, the rats were anaesthetized with urethane (1.3 g/kg, i.p.), and 

perfused transcardially with 0.1 M phosphate-buffered saline, and then with 4% 

paraformaldehyde. The brains were removed from the cranium, post-fixed in formalin, 

cryopreserved in 20% sucrose (containing 0.05% Na-azide), and sectioned at 32 µm with a 

cryostat microtome. The degenerating cells were stained with Fluoro Jade B®, while that of 

viable cells were identified by anti-neuronal nuclei (NeuN) immunohistochemistry. The 

locations of FJ-B positive (FJ+) cells were observed with a fluorescence microscope 

(Olympus BX-51, Tokyo, Japan) with an excitation wavelength of 470-490 nm and an 

emission wavelength of 520 nm. The NeuN labelling was observed under a fluorescence 

microscope at an excitation wavelength of 530-550 nm, and an emission wavelength of 590 

nm. 

The global ischemia induced damage in both hemispheres, but in each case, the 

hemisphere with the greater extent of injury was evaluated. In case of cortical evaluation, the 

number of FJ+ neurons/mm2 was determined in each slide of each animal in the respective 
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group. A section was viewed and the injured neurons were counted at 4x magnification. In 

case of hippocampal evaluation, a section was viewed at 4x magnification and the most dorsal 

part of CA1 was chosen. Then, at 20x magnification, the image was captured with a 12-

megapixel Olympus (DP-70) digital camera. The labelled cells were calculated for 1 mm2. 

The numbers of FJ+ and NeuN-immunopositive neurons/mm2 were determined in each slide 

of all animals. 

In vitro electrophysiology 

 The electrophysiological recordings were conducted 10 days after 4VO. The rats 

(n=3x6) were decapitated, and coronal slices (400 µm) were prepared from the middle part of 

their hippocampi with a vibratome in an ice-cold artificial cerebrospinal fluid solution 

(ACSF) composed of (in mM): 130 NaCl, 3.5 KCl, 1 NaH2PO4, 24 NaHCO3, 1 CaCl2, 3 

MgSO4, and 10 D-glucose, saturated with 95% O2 and 5% CO2. The slices were then 

transferred into a Haas-type recording chamber and incubated at room temperature for 1 h to 

allow the slices to recover in the solution used for recording (differing only in that it 

contained 3 mM CaCl2 and 1.5 mM MgSO4). The flow rate was 1.5-2 ml/min and the 

experiments were performed at 34 ˚C. The stimulating electrode was placed in the stratum 

radiatum near the border between the CA1 and CA2 regions to perform orthodromic 

stimulation of the Schaffer collateral/commissural pathway. Field excitatory postsynaptic 

potentials (fEPSPs) were recorded in parallel from the stratum radiatum and stratum 

pyramidale. The test stimulus intensity was adjusted to between 30 and 60 µA to evoke 

approximately 50% of a minimal stimulus intensity that evoked a saturated fEPSP (maximal 

fEPSP response) in SC rats. 

LTP of the Schaffer collateral-CA1 synaptic response was induced by high-

frequency stimulation (HFS; 0.2-ms pulses delivered at 100 Hz for 6 s) at 100% intensity of 

the test stimulus, and after HFS the fEPSPs were recorded for further period of at least 60 

min. Input-output (IO) curves were created to measure the basal glutamatergic synaptic 

function. Slices from the same animal were generally used for both tests, including LTP and 

IO curves. Two slices were tested from each rat, and each slice was subjected to only one 

particular test. 

HPLC-MS/MS analysis of L-KYN and KYNA levels in the plasma and brain tissue 

 The vertebral arteries were occluded 24 h before treatments with vehicle or L-KYN 

+ PROB. Two hours later the rats were anaesthetized with pentobarbital (60 mg/kg, i.p.). No 
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bilateral carotid artery occlusion was performed. Blood was taken from the aorta, and 

centrifuged. After decapitation tissue samples were obtained from the hippocampus and 

cerebral cortex, and weighed. The plasma and brain tissue was stored at about -70 ˚C until 

analysis. Upon thawing, the brain tissue was homogenized in a potter. The HPLC-MS/MS 

system was used to measure the L-KYN and KYNA content of the samples. 

Comparative in vivo electrophysiological examination of KYNA and G-KYNA 

 In these experiments, we studied the effects of peripherally administered G-KYNA 

on the hippocampal evoked activity, in comparison with peripherally administered pure 

KYNA. These drugs were administered alone, or in combination with PROB (200 mg/kg, 

i.p.). The doses of KYNA and G-KYNA that were chosen were based on earlier pilot 

experiments, in which both KYNA and G-KYNA were administered i.v. or i.p., in doses of 

17, 34, 68 or 136 µmol/kg. Since i.p. and i.v. administration resulted in similar effects, i.p. 

administration was chosen in further studies. We endeavoured to find the minimum doses that 

were still effective; accordingly, on the basis of these pilot experiments, both KYNA and G-

KYNA were administered in a dose of 17 µmol/kg throughout the main study. 

Statistical analysis 

 Antidromic population spikes evoked by CA3 stimulation were measured from peak 

to peak. Differences between the amplitudes were determined statistically (paired t-test, p 

value set at 0.05 for significance). The results of behavioural experiments are expressed as 

means ± standard deviation (S.D.). Statistical analysis was performed by using the unpaired 

Student t-test or one-way analysis of variance (ANOVA) followed by LSD post-hoc test. 

Neuronal cell counts are presented as means ± standard error of mean (S.E.M.), and were 

analyzed by using one-way ANOVA followed by the Bonferroni test for multiple 

comparisons with SPSS version 9.0. A p value of ≤0.05 was considered significant. A 

nonparametric test on two independent samples was chosen for in vitro electrophysiological 

data (Mann-Whitney U-test). 

SUMMARY OF OUR RESULTS 

In vivo electrophysiology and behavioural studies 

 In these experiments we examined whether pharmacological manipulations that lead 

to increased brain concentrations of KYNA could have any effects on the hippocampal 

electrical activity, and whether they have any antiepileptic effects. We decided to focus on the 

hippocampus, and on the question of whether co-administration of L-KYN together with 
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PROB enhances the effects of L-KYN. Accordingly, recordings were made in vivo and both 

behaviour and seizure susceptibility were examined, resulting in a more thorough study of the 

hippocampal function than if either of these features was studied alone. The evoked responses 

of hippocampal neurons were chosen as an end-point for these electrophysiological 

experiments because of the high concentrations of glutamate receptors on the dendrites of 

these neurons, and because they receive glutamatergic afferents that can be stimulated 

preferentially in vivo. 

 In our study, we administered a relatively high systemic doses of the precursor, L-

KYN (in combination with PROB), which led to a non-physiological concentration of KYNA. 

This proved effective: L-KYN administered i.p. slightly (not significantly) decreased the 

population spike amplitude of the CA1 pyramidal cell responses. PROB had a somewhat 

stronger effect, with a longer delay. The two compounds administered together resulted in a 

marked and significant decrease in amplitude of the population spikes evoked on the CA1 

pyramidal cells. This effect is probably based on the inhibition of the NMDA receptors of the 

CA1 pyramidal cells by the elevated level of KYNA in the brain tissue, as a consequence of 

peripheral L-KYN and PROB administration. This seemed to be able to compensate the 

overexcitation induced by PTZ. Indeed, 60 mg/kg PTZ administered i.p. resulted in a 

significant increase in amplitude of the CA1 spike activity, and this effect was completely 

compensated by pre-treatment with L-KYN+PROB. In parallel with the electrophysiological 

results, we studied the effects of L-KYN+PROB pre-treatment on the PTZ-induced seizures 

and death in awake animals. To test the possible protective effect of L-KYN+PROB in 

behaving animals, we chose the convulsive dose of 60 mg/kg PTZ. The pre-treatment with L-

KYN+PROB was effective in protecting the animals against the generalized clonic seizures. 

Although they exhibited reduced rearing, washing and defecation activity, we did not observe 

any difference in behaviour between the controls and the treated animals in an open-field 

arena. 

The primary finding of our study was that the peripheral administration of L-KYN 

and PROB eliminated the effects of PTZ; the responses to glutamatergic inputs were 

decreased in the CA1 region of the hippocampus, and in the behavioural experiments L-KYN 

and PROB pre-treatment protected the animals from the PTZ-induced kindling of seizures and 

death. 
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4VO model of transient global ischemia 

Histology 

 It has long been known that a reduction in cerebral blood flow is closely related to 

different kinds of brain dysfunctions. The CA1 region of the hippocampus is particularly 

vulnerable to hypoxic conditions. Our results have shown that 4VO-induced temporal global 

ischemia results in neuronal damage not only in the hippocampus, but also in the neocortex. 

Moreover, L-KYN+PROB application significantly reduced this cortical neuronal damage 

after either pre- or post-ischemic administration. L-KYN+PROB administration considerably 

decreased the number of injured neurons in the CA1 region of the hippocampus. However, the 

decrease in the number of injured neurons was highly significant only in the pre-treated 

group. The animals in the post-treated group also exhibited a tendency to a reduction in the 

number of injured neurons, but this change was not significant. The NeuN 

immunohistochemistry supplemented these results: the number of non-injured cells was 

highest in the SC group, and lowest in the 4VO animals. Post-treatment with L-KYN+PROB 

had minimal effect, while in the 4VO animals, which received L-KYN before ischemia the 

number of intact cells was comparable to the control level. 

The extensive literature suggests that an appropriate elevation of the brain KYNA 

concentration leads to a neuroprotective effect. The normal concentration of KYNA that we 

measured in the cerebrospinal fluid (CSF) by mass spectrometry is 20-30 nM. A considerable 

(800-1300-fold) increase in the brain KYNA level following the peripheral administration of 

L-KYN+PROB was demonstrated more than 15 years ago. 

In vitro electrophysiology 

 The input-output (IO) curves of SC, 4VO and 4VO animals which received L-

KYN+PROB treatment were established by plotting the fEPSP amplitudes against various test 

pulse intensities from 0 to 100 µA. No significant difference was found between the IO curves 

in the three groups, implying that the basal functions of the pyramidal cells and synapses were 

not affected by complete ischemia. LTP was induced by HFS of the Schaffer collateral-CA1 

synapses. In the SC group, the HFS caused a robust increase (170-180%) in the slope of the 

fEPSPs and this increase in slope (and in amplitude) remained at the elevated level during the 

1h registration period. The same conditioning protocol did not induce significant, lasting 

increase of the fEPSPs in the majority of the 4VO animals. In this group, the elevation of the 

amplitudes was only transient; no LTP was observed. At the end of the registration period, the 

slopes had returned to the control level, or decreased below the baseline. 
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 A novel finding here is that the administration of L-KYN+PROB once before and 4 

times after 4VO-induced transient global ischemia proved neuroprotective in histological 

studies, and also reduced (nearly abolished) the impaired LTP induction in the Schaffer 

collateral - CA1 pathway in adult rats. In the majority of the 4VO animals, no LTP was 

observed. The administration of L-KYN+PROB protected the brain slices from the 4VO-

induced LTP impairment. L-KYN restored the fEPSP slopes to the control level, and these 

parameters were stable until 60 min after HFS. 

 In most cases, after transient global ischemia, the surviving neurons displayed 

normal transmission, except for the reduction in the maximum level of fEPSPs that seems to 

be a consequence of the cell number reduction due to ischemic cell death. The impaired LTP 

induction should reflect deficits in the machinery specific to LTP induction in the individual 

surviving neurons. Although the mechanism is not yet known, we have demonstrated for the 

first time here that treatment with L-KYN+PROB rescues the Schaffer collateral-CA1 

synapses from impaired LTP induction after transient global ischemia. 

Plasma and brain L-KYN and KYNA concentrations 

 Treatment with L-KYN+PROB considerably increased both the L-KYN and KYNA 

concentrations in the plasma and brain, and also altered their proportions within the 

compartments studied, but this was probably due to the relatively large scatter of the data. In 

the sham-operated rats, L-KYN concentration was approximately 3-fold higher in the plasma 

than in the cortex and hippocampus. On the other hand, the KYNA concentration was higher 

in the cortex and hippocampus than in the plasma (p<0.001), and higher in the cortex than in 

the hippocampus. The L-KYN concentration increased 37-fold in the plasma and 

approximately 70-fold in the hippocampus and cortex, while the KYNA concentration was 

elevated roughly 300-fold in the plasma and 50-fold in the hippocampus and cortex. 

Comparative in vivo electrophysiological examination of KYNA and G-KYNA 

 The primary finding of our comparative in vivo electrophysiological examination of 

KYNA and G-KYNA was that the peripheral administration of G-KYNA in a dose as low as 

17 µmol/kg, especially together with PROB, effectively reduced the responses to glutmatergic 

input in region CA1 of the hippocampus, while pure KYNA injected either equimolarly or in 

higher doses, did not do so. These results suggests that the manipulation of brain kynurenines, 

e.g. increase of the KYNA level in the brain, may reduce the overactivation of EAA receptors, 

and offers novel therapeutic opportunities. 
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CONCLUSION 

 The discovery of the importance of the family of kynurenines in the brain function 

under physiological and pathological conditions has led to the development of powerful new 

compounds that promise to emerge as some of the first effective treatments for brain 

neuroprotection and as valuable adjuncts or alternative therapies for other CNS disorders. It is 

likely that, with continued development, a selection of new agents will soon be suitable for 

therapeutic intervention in the prevention or treatment of brain damage and neurodegenerative 

disorders, areas that at present remain almost impossible to treat. 

Three potential therapeutic alternatives appear to offer the perspectives for the 

future (the use of pro-drugs of KYNA, like L-KYN; application of KYNA analogues; and 

manipulation of the KP by enzyme inhibitors). Nevertheless, it would be especially important 

to explore the L-KYN metabolism with softer and more sensitive methods in patients with 

different diseases. A good number of researchers have measured the levels of KYNA and 

QUIN in the plasma and CSF in certain conditions, but the causes and effects between KYNA 

and diseases are still not known in detail, and in most cases they are quite unknown. In the 

future, it would be useful to elicit the relationships between the KP and diseases through the 

application of sensitive molecular techniques in line with the development of powerful new 

compounds. In the face of all these challenges, it is clearly necessary to develop and spread 

the personal therapies of the patients with utilization of the recent research results. 
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