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SUMMARY
Acute and chronic airway inflammations are the mpathogenetic features of numerous

pulmonary diseases. There are several methods isgudihe pathomechanisms of
inflammatory respiratory diseases. To asses therggwf lung diseases, the bronchoalveolar
lavage (BAL) and mechanical lung function tests thee most current diagnostic methods in
the experimental and human pulmonology. Howevepgetrtdon of BAL procedures and
assessments of respiratory mechanic parametersatll sodents (mice and rats) mostly are
not allowed, animals are regularly sacrificed a& #&md of the experiments. For that reason
there is no possibility for serial assessmentsgitadinal follow-up of pathological changes
and comparison of results within the same animals.

In the present study there is exhibited an indiglcdanimal model that provides follow-up of
bronchoalveolar lavage fluid (BALF) with analysisf @ellular profile, as well as
measurements of respiratory mechanics. BALF catlest were achieved by methods of
repeated partial BAL, separately measured airwagslang tissue mechanics were assessed
with low frequency forced oscillation technique (FOin individual rats. Longitudinal
changes are detected within the same animals inFBA&llular profile and lung tissue
mechanics by induction of an acute lung injury (Ablith an intraperitoneal injection &
coli lipopolysaccharide (LPS). Bronchial hyperreacyiv(BHR) to exogenous constrictor
stimuli (metacholin) is assessed and the influxcells into the lungs repeatedly in rats
exposed to different modes of administration ofdahergen, ovalbumin (OVA). Furthermore,
histopathological consequences of lung tissue vig@hb by LPS and OVA expositions are
identified.

The applied method allows longitudinal follow-up thie BALF cellular profile and airway
and lung tissue mechanics in rats. Subsequentnsigsedministration of LPS, makes the
early detection of ALl possible in the BALF and paatory mechanics. Following single
systemic administration combined with chronic iatti@n of OVA, the self-controlled study
design provides experimental evidence of the strasgpciation between the BHR and the
number of eosinophils in the BALF. On the basishistopathological resultgshe LPS
induced rat model is not only suitable for the stigation of ALI/ARDS, but also allows an
assessment of a chronic inflammatory process lgathnbronchus associated lung tissue
(BALT) hyperplasia and emphysema. Furthermé@okowing the OVA sensitisation a chronic
inflammation with allergic characterisation is railed in the rat lung tissue.

In conclusion, these animal models may be feasthblesearch of experimental ALI/ARDS,

BALT, emphysema and asthma bronchiale.
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1. INTRODUCTION

Inflammatory diseases of the lung concern a subatgsroportion of the population of the
world. Production of cellular and non-cellular eksmts of the airway inflammation against to
different agents - pathogens, allergens and othiarits - play an important role in the
modulation of acute and/or chronic airway inflamimmat While acute inflammation is an
immediate defensive reaction followed by repaircesses that restore the lung tissue back to
normal, chronic inflammation persists for a longéi Chronic inflammation represents the
pathological basis of several pulmonary diseadles, asthma, chronic obstructive pulmonary
disease, mucoviscidosis, bronchiectasis etc. Pattesis of chronic airway inflammation is
not clear, however, there are evidences suggestmgnvolvement of many exogenous and
endogenous factors. Development of chronic airwdiginmation is not fully characterised,
but there is evidence, that it may begin in infancghildhood [1].

Inflammatory processes of the respiratory tractuoén the mucous membrane and in the
bronchoalveolar surface. Investigation of pathoraadms of respiratory diseases, as well as
cellular and/or soluble elements is possible bynbhoalveolar lavage (BAL) procedure in
pulmonology and also in experimental animals [26]nical longitudinal studies to explore
the long-term development of a pulmonary diseaseqss or the effects of different drugs or
toxic substances are frequently performed in otdefollow the changes in the mechanical

properties of the respiratory system [7, 8].

1.1. Repeated bronchoalveolar lavage combined Witig mechanics measurements in
individual rats

Measurements of airway responsiveness and BALhassessment of cellular and chemical
profiles are commonly combined in human subjeci{9]2and animal models [3-6, 10, 11].
However, the size of the lungs in humans [2, 9] amdarger animals [12, 13] allows
repetition of the BAL procedure, small rodentsdenand rats) are regularly sacrificed at the
end of the experiments. Accordingly, there is ncstlity for repeated interventions;
independent groups are used for these experimadtsha changes in the lungs are detected
from unpaired comparisons. Nevertheless, becaustheofbaseline variability and/or the
apparent scatter in the lung responsiveness, langebers of animals are required in the
independent groups. The ability to successfullybate the trachea of small rodents and
control their ventilation is therefore important fongitudinal studies, in which recovery from

anaesthesia and repeated measurements of airwgyaagnchymal mechanics and BAL are



required. There has been a number of reports iditdrature regarding repeated intubation
[14, 15], lung mechanical measurements [5, 16] BAd [3, 4] in mice and rats. Reports
about methods, which allow the follow-up of the BAuid profile and the airway and tissue
mechanics in individual rodents are relatively famd generally the methods are not focused

for recovery of animals after investigating procexif14, 17].

1.2. Acute lung injury (ALI) and/or acute respiraty distress syndrome (ARDS)

ALI and/or ARDS are caused by a variety of unrelatesults, including infection with Gram-
negative bacteria. They are characterised by ate asfiammatory process in the air spaces
and lung parenchyma. The loss of barrier functibthe alveolar epithelial and pulmonary
capillary endothelial cells results in respiratéayure in critically ill patients. A huge amount
of pro- and anti-inflammatory cytokines and chemelsi play role in mediating, amplifying,
and perpetuating inflammatory-induced acute lungiryn which manifest clinically in
pneumonia, sepsis, and shock syndrome. The terAlLlbshould apply to a broad range of
pathological abnormalities in the lung, and thentef ARDS should be reserved for the most
severe cases of acute lung injury [18].

Endotoxin-induced lung inflammation can be perfadnespecially well by the systemic or
intratracheal administration of the bacterial endot, mainly Escherichia coli (E. coliL.PS

in animal models. There have been several litegataports on the pathological histology
following the LPS-induced inflammatory responsehe lung tissue. Some of these studies
revealed the participation of various cells (nepitits, macrophages, and lymphocytes) and
signs of diffuse alveolar damage (oedema, alveblgeraemia, haemorrhage, type I
pneumocyte alterations, alveolar macrophage acaton] and the development of hyaline
membrane) [6, 16, 19-26]. Furthermore, other agth@ve reported that LPS may induce
additional pathological alterations in the lungsthwhyperplasia of bronchus associated
lymphoid tissue (BALT) in small rodents [27-29] aral single episode oE. coli
endotoxinaemia causes a multiphase alveolar inflatom response (neutrophil influx and
recovery) [30]. In addition, emphysema and broriamacous cell hyperplasia is induced by
tracheal or intraperitoneal LPS administration tmlents [31, 32]. The wide variety of
histopathological changes observed in the lungsviihg LPS administration indicates that

the morphological changes in the lung parenchynva hat been characterised completely.



10

1.3. Asthma bronchiale

On the basis of actual conceptions, asthma brolecisiaa chronic inflammatory lung disease,
which is characterised by infiltration of inflammag cells (mostly eosinophils) into the
respiratory mucosa leading to enhanced reactivitthe airways to various constrictor
stimuli. There is a correlation between eosinogbilints in BAL fluid and the severity of
bronchial hyperreactivity (BHR) [33].

Although the underlying pathophysiological mechargsesponsible for BHR have not been
fully elucidated, animal models have contributetbsgantially to the understanding of this
lung disease by demonstrating the key role of ainmlammation, following exposure to
various allergens [34-37].

Exposure to materials such as ozone [34], ragw8Bl pscaris suum extract [37] or most
commonly ovalbumin (OVA) [36, 38-40] leads to chimmirway inflammation in animal
models. Since such exposure causes an influx aduainflammatory cells into the mucosa
and lamina, the inflammatory process in the airwhgs been assessed by analysing the
cellular content of the bronchoalveolar lavage dfIyBALF) [34-37, 40]. BHR has been
characterised via the changes in lung responsigeioeson-specific constrictor stimuli, such
as histamine, exercise, adenosine and methach@i@d). Since the immune responses of
animals exhibit considerable inter-individual vaildy, the performance of longitudinal
studies with repeated measurements of the airweytiasue mechanics and the profiling of
BALF are particularly important following allergicensitisation. Various sensitisation
protocols have been applied in different animal ei®dwith variable results, and the

differences between these methods have not belgrcharacterised.

2. AIMS

The specific objectives of the present study were:

2.1.

To develop an individual animal model that provid@w-up of BAL fluid cellular profile,
as well as the airway and tissue mechanics by rdstlad reproducible, partial BALF
collections and separately measured airways angl iseue mechanics with low frequency
forced oscillation technique (FOT) in individuatsa
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2.2.
To detect the longitudinal changes within the saatein BALF cellular profile and lung
tissue mechanics
- by induction of a mild ALI with an intraperitoneahjection of E coli
lipopolysaccharide
- to assess the bronchial hyperreactivity and thepurdf cells into the lungs
repeatedly in rats exposed to different modes ohiadtration of the
allergen, OVA.
2.3
To identify the histopathological consequencesunfgl tissue followed by LPS and OVA

expositions in rats.

3. MATERIALS AND METHODS

The experimental protocol was approved by thetutstinal Animal Care Committee of the

University of Szeged, School of Medicine, and wasfgrmed in accordance with the

National Institutes of Health guidelines for usiexperimental animal. The male Wistar rats
(weight range 350-500 g) were kept in a healthprplin the animal housing facility of the

University of Szeged, and were allowed accessdd #nd watead libitum

3.1. Animal preparations

Anaesthesia was induced with an intraperitonedl iGjection of 5% chloral hydrate (400
mg/kg). This dose can keep rats fully anaesthetif®d50—60 min. Intubations were
performed in the same manner as described by Brewal. [14]. Briefly, the rat was
suspended at an angle of 45° by its two front ugpeth, by a rubber band attached to a
Plexiglas support. A 150-W halogen light sourcecii Volpi Cold Light Illuminator) with
two flexible fibre-optic arms allowed transilluminan of the trachea just below the vocal
cords. During this direct visualization, a 7.0-comg (ID 1.5 mm, OD 2.0 mm) polyethylene
(PE) catheter was inserted with the help of a Deabgby laryngoscope into the trachea via
the oral cavity. To avoid tissue damage in theheag the tip of the catheter was rounded. The
rat was then removed from the Plexiglas suppogcaa in a supine position on a special
holder, attached to a small animal ventilator (Mc8&3, Harvard Apparatus, South Natick,

MA, USA), and mechanically ventilated with room gifO breaths/min, 7 ml/kg tidal
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volume). The tail vein was cannulated with a 24ggawannula (Vygonile V 24G) and

muscle relaxation was achieved by administeringpaomium bromide (0.2 mg/kg iv).

3.2. Measurement of respiratory mechanics

The input impedance of the respiratory system (#ra$ next measured during short end-
expiratory pauses interposed in the mechanicailagon. This measurement set-up was used
to collect Zrs data [41]. Briefly, a three-way teyas used to switch the endotracheal (ET)
tube from the ventilator to a loudspeaker-in-bostesn at end-expiration. The loudspeaker
delivered a computer-generated small-amplitudec®H,O) pseudorandom signal (23 non-
integer multiples between 0.5 and 21 Hz) throughO8-cm-long, 2-mm-ID polyethylene
tube. Two identical pressure transducers (modelABND, IC Sensors, Malpitas, CA, USA)
were used to measure the lateral pressures abukefdeaker end {Pand at the tracheal end
(P,) of the wave-tube. The signals &1d B were low-pass filtered (5th-order Butterworth,
25-Hz corner frequency), and sampled with an anedatjgital board at a rate of 256 Heast
Fourier transformation with 4-s time windows an@®bverlapping was used to calculate the
pressure transfer functionsy(P,) from the 6-s recordings collected during apnea. \¥as
calculated as the load impedance of the wave-#bk [

A model containing a frequency-independent rescgafR) and inertance () and a tissue
damping (G) and elastance (H) of a constant-phiasee compartment [43] was fitted to the
Zrs spectra by minimising the weighted differenedween the measured and the modelled
impedance data. The tissue parameters charactirsalamping (resistive) and elastic
properties of the respiratory system. Raw and laprasent primarily the resistance and
inertance of the airways, since the contributiohef chest wall to these parameters in rats is
minor [17]. The resistance and inertance of theWbE and the connecting tubinge(R= 125
cmH,0.s/l, kr = 0.79 cmHO./l) were subtracted from the Raw and law values,

respectively. Respiratory tissue hysteresivitywas calculated ag = G/H.

3.3. BAL fluid collection and analyses

There was performed partial lung lavage in the atsmPositional changing of the examined
animals provided that the washing fluid only can igéo the left side lung. After the animal
had been detached from the ventilator, it was mel&h upright position and turned to the left.
0.8 ml pre-warmed (37C) physiological saline was instilled via a PE waghcatheter (4-
cm-long, 0.86-mm-ID and 1.27-mm-0OD), which was fletbugh the tracheal tube. To ensure
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that the washing liquid reached the lower airwdlys,animals were attached to the ventilator
for 2 min. The rat was then detached from the leoti again, its head was turned
downwards and to the right, and the BAL fluid wadlected gently from the tracheal cannula
without suction. The presence of foamy air bubirlese fluid indicated that the sample came
from the bronchoalveolar space. Recovery of thenimgsfluid was 0,3-05 ml (40-60%). The
BAL fluid was collected into Eppendorf deep freagiressels, then it was centrifuged at 8000
rpm with an Eppendorf Biofuge Bico centrifuge. Thigpernatant was removed and the cell
pellet was re-suspended in 50 pl physiologicalngaliThe total number of cells (TC) was
counted with a haemocytometer (ABX Micros 60) am@iBuerker chamber. The cells were
also smeared, fixed and stained with May-Grinwalkehtda and examined microscopically
to identify the different cell types.

3.4. LPS treatment procedures

In 13 animals, one week after the finseasurements respiratory mechanics and BAL, acute
lung injury was induced by the ip injection of LKE. coli O55:B5, Sigma Chemical, St
Louis, MO, USA) 18 h before the second measurer(®bl-group). Five rats received the
same volume of physiological saline ip also 18 foiteethe second measurements (Control
group). The third measurements were made 2-4 waf&s the LPS or saline treatment (3
weeks on average). With this protocol, we had thesibility to compare the values for the

two groups and also to follow the alterations i@ same animals.

3.5. OVA treatment procedures and protocol groups
Four groups of Wistar rats were studied. After finrd assessment of lung responsiveness by
performing iv MCh challenges (detailed below) arlB, the rats were assigned into one or

the other of the following protocol grouffsig. 1).
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Figure 1. Experimental and treatment protocols in the fousugs of OVA treated rats

The animals in Group 1 (N = 6) received an ip ihggcof 1 mg OVA and 50 mg aluminium
hydroxide (Sigma-Aldrich Ltd, Budapest, Hungary) days O (after completing the first
experiment) and 7. The experiments in these rats performed on days 0 and 14.

The rats in Groups 2 (N = 7) and 3 (N = 7) simylaeceived an ip injection of 1 mg OVA
and 50 mg aluminium hydroxide on days O (after cetnpy the first experiment) and 7.
These rats were then exposed to aerosolised (Voykar jet nebuliser, Italy) OVA (25
mg/ml in saline, driven by a flow rate of 8 I/mif @dompressed air) during a 20-min period
prior to the experiments. The second set of expartsmwas than performed on day 14 in the
animals of Group 2, and on day 20 in the rats m@olin Group 3.

The Group 4 (N = 10) rats received an ip injectadinl mg OVA and 50 mg aluminium
hydroxide on day O (after completing the first esipent). Aerosolised OVA was then
administered to these animals on 7 consecutive ddggs 14-20). Experiments were
performed on day O and on day 20.

On the days of the experiments, when the animalreadhed a steady-state condition (5-10
min after the starting of mechanical ventilatiotf)e volume history was standardised by
administering a hyperinflation via occlusion of tepiratory port of the ventilator. Four Zrs
recordings were then collected to establish thelvasrespiratory mechanical parameters. 2
png/kg MCh was next administered into the tail vaind Zrs was recorded 20 s, 1 min and 2

min after the injection. The preliminary experimemnt another group of rats revealed that the
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peak response occurs 20 s after the MCh injectitrereas the effect was diminished 2 min
later. Following this transient constriction, taeimal was allowed to recover, and further iv
MCh challenges were given by elevating the dosg ®and 16.g/kg. The peak increases in

the mechanical parameters were observed 20 sth&édviCh injection; these increases were
related to those obtained from the average of thasgline Zrs recordings. After completion

of the MCh provocations, partial lung lavage wasqrened.

3.6. Recovery management
After the completion of the BAL and respiratory rhanical measurements, we waited for the
return of spontaneous breathing, applied oxygerafiyeaccording to the saturation change

and finally extubated the animals.

3.7. Histological examinations

For morphologic studies of the lung tissue the ltfe&ted rats were euthanised with a 10%
potassium chloride intravenous (iv) injection, ¢eling the repeated BAL and FOT
examination series. Among the chronic OVA treated (Group 4), 2 animals were lost after
FOT and BAL measurements, in this way their lungserexamined histopathologically.

After opening the chest, the lungs and the heamewemoved in one block, fixed by
intratracheal inflation with 10 % buffered formalifhen we placed them into formalin for 48
hours. Representative lung tissue sections (from rthd portion of both lungs) were
embedded in paraffin before cutting. The slidesewstained with haematoxylin and eosin
(H&E), periodic acid—Schiff (PAS), and Masson’skiome. All slides were examined by the
same investigator in a blinded fashion. A lung ipjacore was used to quantify the changes

in lung architecture observed on light microscopy.

3.7.1. LPS-treated animals

The degree of microscopic injury was scored wittpard to the following variables: BALT
tissue hyperplasia of the bronchial walls, alvealad interstitial damage (i.e., diffuse alveolar
damage — DAD, atelectasis, and emphysema) and laasalierations (hyperaemia and
haemorrhage). The severity of injury was gradedolsws for each of the 4 variables: no
injury (0), injury to up to one third of the fie(d+), injury to up to two thirds of the field (2+),
and diffuse injury throughout the field (3+).
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3.7.2. OVA-treated animals

Characterisation of lung tissue inflammation inahgdfields around bronchus/bronchiolus
walls and vessels was performed by a semiquanstatore.

The severity of inflammation was graded on thesbashumbers and quality of inflammatory
cells as follows for each of 3 variables: no injui), mild alteration (1+); moderate

alterations (2+).

3.8. Statistical analysis

3.8.1. LPS - treated animals

The scatters in the parameters were expressed asl&&s. The Kolmogorov-Smirnov test
was used to test data for normality. Within thetpcol groups, repeated measures of one-way
analysis of variances (ANOVA) was used to assesseffects of time on the mechanical
parameters and on the total cell counts. One-wayOXN was applied to compare the
mechanical parameters between the independentcptogwoups. The Student-Newman-
Keuls multiple comparison procedure based on th@nsmewvas applied to compare the
different conditions (for repeated measures) ortqua groups (for independent groups).

Statistical tests were performed with a signifietevel of p<0.05.

3.8.2. OVA - treated animals

The MCh dose causing a 100% increase in RawgP®@as calculated by linear interpolation
of the dose-response curves from the individuainais. The scatters in the parameters were
expressed as SE values. The Kolmogorov-Smirnovwastused to test data for normality.
Two-way repeated measures of analysis of varia(BR©OVA) with the factors assessment
time (control vs. OVA treated) and group allocatisas used to assess the effects of OVA
treatments on the lung responsiveness and on theocats determined from the BALF. The
Holm-Sidak multiple comparison procedure was aplpt@ compare the different conditions
(for repeated measures) or protocol groups (foepemdent groups). Correlation analyses
between the variables were performed by using Beamsrrelation tests. Statistical tests were
carried out with the SigmaStat statistical softwpaekage (Systat Software, Inc, CA, USA)

with a significance level of p<0.05.



17

4. RESULTS

4.1. Analysis of BAL fluid and respiratory mecharsc

An individual animal model was developed, whicloa# follow-up of BAL fluid cellular
profile, as well as the airway and tissue mechamycmethods of reproducible, partial BALF
collections and separately measured airways angl iseue mechanics with low frequency
forced oscillation technique (FOT) in rats.

The temporal changes in the airway and tissue nmécddaparameters following BAL are
demonstrated ifrig. 2. Although BAL led to a moderate, but statisticalgnificant increase
in Raw with no change in law, the airway mechamoamalised within 3 min following the
BAL procedure. The increases in the respiratogugsparameters were more pronounced and
lasted longer than those in Raw, but both G anddHrieturned to their baseline values 6 min
after BAL. The total cell count was low and remairstable throughout the study period in
the control animals (6-86 x ¥nl), suggesting that the lavage procedure itselfrdt cause
any significant change in the cell counts. The iqaiale cell analysis of the BALF showed
that, the ratio of macrophages was 50-60% of the TC
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Figure 2. Changes in airway resistance (Raw) and inertanae/) and tissue damping (G)
and elastance (H) following partial lung lavage. liBaseline condition prior to lavage

*: p<0.05 vs. baseline values
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4.1.1. LPS-treated animals

Longitudinal changes were identified within the sarat in BALF cellular profile and lung
tissue mechanics by induction of a mild ALI with sntraperitoneal injection of LPS. The
airway (Raw, law) and tissue mechanical paramgterd, n) and the total cell counts for

the control and LPS-treated rats are depictdelgn3. for the whole study period.
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Figure 3. Airway resistance (Raw) and inertance (law), tissiaenping (G), and elastance
(H) and total cell count in control (closed symbasad LPS-treated rats (open symbols). LPS
treatments was performed before week 2. *: p<0€5meek 1 within a group. #: p<0.05 vs.
control group at a given time

LPS administration before the second set of measemes had minor effects on the

parameter&aw andlaw, whereas statistically significant increasesenarserved in botls
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andH at week 2. The mechanical parameters were faipyoducible; they exhibited only
slight gradual decreases in time in the controiahs, which is probably due to lung growth
during the experimental period. The elevations iar@d H had diminished by the third set of
measurements, i.e. 2-4 weeks after LPS adminstraiihe mechanical parameters did not
reveal any statistically significant difference ween the protocol groups at any time during
the experiment, while the statistical tests periarwithin a protocol group were sensitive to
detect the LPS-induced changes. The TC rose marled significantly (with substantial
inter-individual variability) after the second exipeent in the LPS-treated rats.

Cytological patterns of BAL fluids are showed kig. 4. Marked differences are between
slides from control (a) and LPS-treated animalsufd c). Distinctions are observable in the
cell counts per fields of vision of the BALF-cytgipin case of 3 mg/kg (b) compared with 2
mg/kg (c) LPS-treated animals.

Figure 4. BAL fluid cytology. Control (a) and 2 mg/kg (b)m@/kg (c) LPS - treated animals
LM, original magnification, x400, May-Grinwald-Gism

To further characterise the effects of LPS on theg$, we expressed the relative changes in
the airway and tissue parameters between theafidtthe second week of the experiments in
both groups of rats. These values and the chang&€ iare summarised iig. 5. The mild
decreases in the airway mechanical parameters agsariated with moderate increases in G
and H following LPS administration, while the latparameters remained at their pre-existing
levels in the untreated rats. LPS induced strilelayations in TC, whereas TC was low and

highly reproducible in the untreated rats.
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Figure 5. Relative changes in respiratory mechanical pararseand total cell count
between first and second weeks of the experimeihistih groups of LPS treated rats

4.1.2. OVA-treated animals

By methods of serial measurement of BALF cellulesfite and lung tissue mechanics in
individual rats, bronchial hyperreactivity and tinflux of cells into the lungs were assessed
after they had been treatditferent modes of administration of the allergévA.

The changes in the airway and respiratory tissuehar@cal parameters following MCh
challenges in the 4 groups of rats that underwdferdnt OVA treatment procedures are
demonstrated ifrig. 6. There was no difference between the protocol gganghe baseline
levels of the respiratory mechanical parameterd, raane of the OVA treatment protocols

affected their levels significantly. MCh inducedsdedependent increases in Raw and G
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under all experimental conditions, while H remairsegdhe baseline level. OVA treatments
had no significant effects on the MCh dose-respansees in Groups 1, 2 and 3, whereas the
elevations in Raw were statistically greater (p8).8fter sensitisation with chronic OVA

exposure in the Group 4 rats.

Group 1 Group 2 Group 3 Group 4
= 18
E
2 /
o /
10 y
%' . . '#f’ fI
a }, /‘ Zf il
. {
0.5 £, I
: £ P r f
[+ . = . - & ,_.T - i\’- .
- — _ - o e A o
o e OB P i
C M M MA MG
&
& v T
£ I
2 s
¢ I . 3
(]
e Fal . o
Q@ 2 g/T . ,;;ﬁ 27
s f i . L=
P o p—o="8 -0 " = ER L
0
= & - _I
£ % ,._£ 0-—I--" — T - _5,;%_;,.:“ - ._E.
o 6:'--.— —..—r—-if T"“-T-H'“' r__,-" ‘r I -"'S-S"
:E- ) ) -@- Tl é‘\-u ‘?’" _
o ﬁ-:g-_-"'é’_"' ?
I -
=2 —8— cirl {day O) —a— cirl (day 0) —— ctrl (day 0} —e— ctri (day 0)
—T— OVA (day 14} — 10— OVA {day 14) —-0— OVA (day 20} —o— OWA {day 20)
0 . - - - ]
C M2 WM& ME MIE C M2 WM& ME MG C M2 M+ MB M1 C M M4 M3 M5

Methacholine (ng/kg)
Figure 6. Airway resistance (Raw), tissue damping (G) arastahce (H) under the control
conditions and during MCh challenges (M2—-M16) ia fbur protocol groups before (closed
symbols, day 0) and after (open symbols) the O\atmrent procedures. *p < 0.05 vs.
control values?p < 0.05 between the naive and treated conditions

The relative changes in the airway responsiveresscteasing doses of MCh injections are
demonstrated irig. 7 for the 4 protocol groups before and after OVAatmeents. MCh
induced dose-dependent increases in Raw in allogobtgroups under both control and
treated conditions (p<0.001 for all groups). Norgein airway responsiveness was observed
in the rats in Group 1 (p=0.23), Group 2 (p=0.36)Gwoup 3 (p=0.51) after treatment with
OVA.
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Figure 7. Relative changes in airway resistance (Raw) ipo@se to increasing doses of

MCh (MCh2-16) in the four groups of rats beforédti bars) and after (open bars) OVA
treatment. *p < 0.05 between the naive and treatatlitions

In contrast, the MCh-induced changes in Raw wageifstantly enhanced (p<0.02) following
the sensitisation procedure in the animals in Gruphese changes were manifested in the
PCio values(Table 1)
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Ctrl OVA P
Group 1 9.9+2.1 8.2+1.9 0.38
Group 2 7.4+1.3 10.8+1.5 0.17
Group 3 9.0+£1.9 9.5+2.7 0.72
Group 4 8.9+1.3 4.2+1.1 0.0009

Table 1.The MCh dose (ug/kg) causing a 100% increase in FRWyyy) before (ctrl) and
after ovalbumin (OVA) treatments in the 4 protogaups

The Fig. 8 summarises the changes in the BALF cellular prafil the 4 protocol groups
following the different treatment procedures witivA&Q The cellular content of the BAL
exhibited a great inter-individual variability (rging from 6x18 to 21x13 cells), though the
group means of the initial values were not statidlly different (p=0.9 for total and p=0.7 for
eosinophil counts). OVA treatment did not cause aignificant change in the total or
eosinophil cell count in the rats in Groups 1, @ 8nwhereas it led to marked and statistically
significant increases in the total number of c@lis0.05) and in the amount of eosinophils
(p<0.002) in the animals in Group 4. No statisticalgnificant changes were observed in the

number of neutrophils.
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Figure 8. Total cell counts, eosinophil and neutrophil canitef the BALF in the four groups
of rats before (filled bars) and after (open baBYA treatments. First experiments were
performed always on day O (ctrl); the rats weresssssed after OVA treatments on day 14

(Groups 1 and 2) or on day 21 (Groups 3 and 4)<*@.05 between the naive and treated
conditions

The relationship between the altered lung respensiss (expressed asipfcand the cellular
changes in the BALF are displayedHig. 9 for those animals where BHR was present (i.e.
Group 4). Although the animals exhibited substanimer-individual variability, which

resulted in varying slopes of these relationships, decreases in Rg following multiple
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OVA exposures were always associated with increaséise number of eosinophils in the
BALF in the rats in Group 4.
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Figure 9.Associations between the individual changes in M@h dose causing 100%
increase in the airway resistance (Rg and the eosinophil content of the BALF in thesrat

chronically exposed to OVA (Group 4). Closed sysibbéfore treatment; open symbols:
after OVA exposure

4.2. Histology

Histopathological consequences of lung tissue werdirmed followed by LPS and OVA
expositions in rats.

4.2.1. LPS-treated animals

Representative slides depicted the lung tissueair@at from a control rat, and from rats
treated with 2 or 3 mg/kg LPS. Correspondingly wvifie cytological examinations, there are
striking differences between the control and th&itReated lung tissue sections. Round cell
infiltration was more expressed in the lung tisstithe rats treated with 3 mg/kg as compared
with those treated with 2 mg/kg LPS. In the ratsated with 3 mg/kg LPS, severe
pathological changes could be detected: appeardrgmphoid hyperplasia (partly follicular,
partly parafollicular in the thickened bronchus Mgl and bronchial intraepithelial
lymphocytosis. The follicular hyperplasia was maldd typical, with the appearance of large
number of plasmocytes. On the other hand, in the tr@ated with 2 mg/kg LPS, mild
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expression of lymphocytes, plasmocytes macrophagesmastocytes was observed. Control

rats exhibited no pathological changegyure 10).

Figure 10. Lung-tissue sections.Control animals (a): normausture in the lung. LPS-
treated animals (b, c, d): BALT hyperplasia, sigmaiht round cell infiltration (c), emphysema
(d). There is a clear difference in the degreecnind cell infiltration between the lungs of
rats treated 2 (b) and 3 (c, d) mg/kg LPS. LM, ioxdd) magnification, a,b,c: x224, d: x400,
H&E.

The semiquantitative characteristics of the higiglal changes following saline injections in
the control animals and LPS injections in the wdatats are summarised Table 2 In the
LPS group, 10 of the 13 animals had BALT hyperplaglyperaemia was observed in 12
cases as a consequence of perivascular inflamm&taihological signs of ARDS, DAD (i.e.,
oedema, alveolar hyperaemia, haemorrhage, pneuendcaltterations, alveolar macrophage
accumulation, and the development of hyaline menmdrand emphysema, were observed in
5 and 8 cases, respectively. In control rats, tixeme no pathologic changes in the bronchus

wall or in the pulmonary interstitium, only mild pgraemia was observed.
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LPS-treated rats
Cases Bronchus wall Vessels Alveoli/interstitium LB doses Notice
(mg/kg)
1 BALT 3+ 0 emphysema 2
macrophage
accumulation
2 BALT 3+ hyperaemia 1+ DAD+ 2
BALT 1+ hyperaemia 1+ emphysema 2
4 BALT 2 hyperaemia 1+ emphysema 2
haemorrhage haemorrhage
5 0 hyperaemia 2+ emphysema 2
6 0 hyperaemia 2+ emphysema 2
7 BALT 1+ hyperaemia 2+ DAD 1+ 2
8 BALT 1+ hyperaemia 1+ emphysema 3
9 BALT 1+ hyperaemia 1+ emphysema 3
10 0 hyperaemia 2+ atelectasis 3
DAD2+
11 BALT 1+ hyperaemia 1+ emphysema 3
DAD1+
12 BALT 1+ hyperaemia 2+ haemorrhage 2+ 3
13 BALT 1+ hyperaemia 2+ DAD 3+ 3 the most
haemorrhage 2+ serious
lesion
Control rats
lc 0 0 0 NaCl
2c 0 hyperaemia 1+ 0 NacCl
3c 0 0 0 NaCl
4c 0 hyperaemia 1+ 0 NacCl
5c 0 0 0 NaCl

Table 2.Semi-quantitative characteristics of the histopédlgacal change in LPS-treated and
control animals, BALT- Bronchus Associated LympRassue, DAD - Diffuse Alveolar
Damage (oedema, alveolar hyperaemia, haemorrhageyuocyta Il alteration, alveolar
macrophage accumulation, development of hyalinebreme). Score: no injury (0), injury to
up to one third of the field (1+), injury to up two thirds of the field (2+), and diffuse injury
throughout the field (3+)
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4.2.2. OVA-treated animals

Examinations of lung tissue specimens from OVAf{gdarats demonstrated not only
increased peribronchial/peribronchiolar but perowéar cellular infiltrates consisting of
neutrophils, lymphocytes and eosinophitgglre 11).

Figure 11.Lung-tissue sections. Control animals (a): norstalicture in the lung. OVA

treated animals (b): allergic type chronic bronghitThere is a characteristic round cell

infiltration around bronchi and vessels. LM, origirnagnification, x224, H&E

The semiquantitative characteristics of the higial changes following OVA challenge in
the treated and control rats are summarisedlaible 3 Each of two animals had moderate
dilatation of bronchi and bronchioli and mild BALhyperplasia. Distributions of

inflammatory cells were the similar between lympjtes, plasma cells and eosinophils.
There was no basal membrane thickening or mucasisdexe in the bronchial lumen.

In contrast to the OVA treated animals, the higiaal examinations of saline-treated control

animals showed normal lung structure.
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OVA treated rats (OVA ip 1x and OVA inhalation 7x)

Cases Bronchial/bronchiolar Vessels/perivascular Alveoli Interstitium
walls walls
Lovn dilatation (ectasia): 2+ dilatation: 2+ panacinar 0
BALT hyperplasia: 1+ congestion: 2+, emphysema: 1+
inflammatory cells: inflammatory cells
- lymphocytes: 1+ - lymphocytes: 2+
- plasma cells: 1+ - plasma cells: 2+
- eosinophils: 1+ - eosinophils:  1+.
20va) dilatation (ectasia): 2+ dilatation: 2+ panacinar 0
BALT hyperplasia: 1+ congestion: 2+, emphysema: 1+
inflammatory cells: inflammatory cells
- lymphocytes: 1+ - lymphocytes: 2+
- plasmacells: 1+ - plasma cells: 2+
- eosinophils: 1+ - eosinophils: 1+,

Notice: The thickness of basement membran is norfiledre was no mucous exsudate in the bronchiafum

Control rats (NaCl ip 1x and NaCl inhalation 7x)

1c (OVA) 0 0 0 0

2C ova) 0 hyperaemia 1+ 0 0

Table 3.Semi-quantitative characteristics of the histopédgacal change in OVA-treated
and control animals. BALT- Bronchus Associated Liyoigh Tissue. Score: no injury (0), mild

(1+); moderate (2+) alterations

5. DISCUSSION

We described a novel approach that allows repeataBasurements of the BAL fluid profile
and the airway and respiratory tissue mechanicsmdividual rats. We demonstrated that
reproducible BAL fluid and respiratory mechanicargmeters can be obtained within the
same rat. The collection of BAL fluid that inducedly a short-term deterioration in the
respiratory function: both the airway and the respry tissue mechanical parameters
normalised within 6 min following the segmental BAtocedure.

Longitudinal changes were detected within the saamen BALF cellular profile and lung
tissue mechanics by induction of an ALI/ARDS witlp iinjection of E. coli

lipopolysaccharide.
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We have also utilised a method that allows follgovedi the BALF cell counts and airway and
tissue mechanics in rats to assess the effectéfefetht OVA treatment protocols on the lung
responsiveness and on the inflammatory markersamikie same rat. There were no changes
detected after ip injections of the allergen otdwing its combination with a single aerosol
exposure. However, repeated inhalations of the Gift&r an ip injection of the allergen
induced an influx of inflammatory cells (mainly @asphils) into the bronchoalveolar system,
which was associated with bronchial hyperreactitdya non-specific constrictor agonist,
MCh.

Our results confirmed the presence of a substaimtief-individual variability in cell count
and respiratory mechanics under baseline conditions

Morphological results demonstrated that the BALpérplasia was the most characteristic
histopathological finding besidiéhe signs of different forms of severe DAD (the oo
manifestations of ALI/ARDS) after systemic LPS adisiration and chronic inflammation
after combination of an ip OVA injection and reshOVA inhalations.

Most studies in small rodents that required measengs of the BAL fluid and/or pulmonary
function could be performed only once on the saménmal. The ability to perform
longitudinal studies has many obvious advantageso®lingly, efforts have been made to
develop techniques, which allow repeated intubatid4], the sampling of airway
inflammatory cells [3, 4] and longitudinal assesetr@ the lung function in individual small
rodents [3-5, 17]. Two different approaches havenberoposed to collect lavage fluid
repeatedly in small laboratory animals. Waltersakt developed procedures that allow
individual mice to survive a whole-lung lavage. Hmgr, the washing procedure mandatory
to obtain a sufficient amount of whole-lung lavayad in mice was likely to lead to a
complete loss of surfactant function in their studlgis was reflected in the lasting (1-4 days)
deterioration in lung resistance and compliance iandariable increases in the number of
inflammatory cells [4]. Alternatively, segmental BAorovides information analogous to that
from whole-lung lavage [3]. Moreover, this techrega less harmful for the animal and it can
be performed in larger rodents, such as rats aregupigs. In this regard, the paper by Varner
et al. provides the only report of a method of segtal BAL that can be performed
repeatedly in rats up to now. In their study, a lswatheter was passed through a tracheal
tube and was advanced to a wedge position. 0.1fmvaom sterile buffer solution was
instilled and then withdrawn by gentle suction @nid maneuver was performed repeatedly.
The results illustrated that the results of cellpydation measurements during acute

inflammation differed considerably between sammpesained via segmental BAL versus
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total-lung lavage. The lavages were conducted-week intervals, when changes in cellular
profile or pulmonary resistance from the baselimeernot observed [3].

Our study differs in many important aspects frofreaflier ones. First, unlike the mice in the
procedure developed by Walters, the rats were antilated with 100% ©@in the present
work, because we intended to test our method hygusPS, and hyperbaric,Onight have
reduced the ALI caused by the intratracheal spoaginLPS in rats [44]. Furthermore, we did
not use suction to withdraw the washing fluid frahe bronchoalveolar cavity: it was
collected only via a positional change of the arninfdis method is sufficient to obtain
around 50% of the instilled solution, it is believi® be more physiological and it causes less
bleeding complications. The cell number and cepiyjation in the BAL fluid did not differ
significantly between samples collected by totalglavage or by our own method.

Another methodological improvement in the presemtlys is that the effects of ALI induced
by LPS were also detected, both in changes incoelhts and in the lung tissue mechanics.
This technique can be used to estimate short-@rgiterm changes in airway mechanics and
is suitable for studying the progression or improeat of a disease in a relatively small
group.

ALl or ARDS, a major cause of morbidity and mottaliin intensive care units, is
characterised by hypoxemia, pulmonary infiltraiesreased microvascular permeability and
endothelial barrier disruption [7, 8]. ALl is oftemduced in animal models by the
administration of LPS [31, 32, 44-47]. LPS is arcleteristic component of the cell wall of
Gram-negative bacteria; it is not found in Gram#des bacteria. It is localised in the outer
layer of the membrane. It contributes to the intggf the outer membrane, and protects the
bacterial cell against the action of bile salts &ipdphilic antibiotics. LPS administration
results in endotoxaemia similar to that seen in AR[31, 32, 44-47]. The ensuing
inflammation is reflected in a dramatically increddevel of neutrophils in the BAL fluid [46,
47]. Our finding of a 10-fold increase in total Iceount confirmed the previously
demonstrated presence of acute inflammation 18 tbr dfPS administration [44-47].
Furthermore, the present development of a nonimgasichnique for BAL fluid collection
allowed the follow-up of the BAL fluid profile weskafter the LPS injection. The cell count
remained elevated, suggesting that LPS inducedonigt acute, but also long-lasting lung
inflammation.

In agreement with the results of previous studis B7], the elevated cell count 18 h after
the induction of experimental ALl was associatethvgignificantly deteriorated parenchymal

mechanics, while the airway parameters remainetheir control levels. Unexpectedly
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however, despite the slight further elevationsatalt cell counts weeks after LPS exposure,
the tissue mechanical parameters decreased sajilfic A similar, apparently conflicting
finding was observed in mice 48 h after the intemhanstillation of LPS, but the explanation
of this observation is not completely clear [45]o €xplain the underlying mechanism
responsible for this finding, the lungs in 3 LP&atied rats were excised after completion of
the protocol; histology systematically revealed thresence of emphysema, which may
develop after LPS administration [31, 32] and leaddecreases in G and H [48-50].

Effects of systemic OVA treatments are expectechitse mild-to-moderate alterations in the
lung tissue. Accordingly, the longitudinal studigsyrticularly the follow-up of BALF and
respiratory mechanics ensure detections of changeslividual animals and avoid the inter-
individual variability. There have been only a fevevious studies in monkeys [37] and rats
[38] where individual animals served as their ovamteols. The behavior of small rodents
(mice and rats) has not been fully characterisethi® regard, despite the fact that these
species are the most common animal models to stuelypathogenesis of allergic lung
diseases, such as asthma [51]. In agreement wathoois results [35, 38, 39, 52, 53], we did
not observe any significant effects of the OVA tneants on the baseline values of the
respiratory mechanical variables. The results wioed in Group 1 were also in line with
previous observations, confirming that ip admimstn of the allergen alone does not lead to
the infiltration of inflammatory cells into the BAL and has no effect on the airway
responsiveness [36, 54, 55]. The earlier resultting to the effects of inhaled allergen are
far more controversial. Some authors reported fextf of a single inhalation of OVA on the
lung responsiveness [37, 39], while others provieddence of the development of BHR and
lung inflammation following a single exposure toaerosol of various allergens [35, 36, 40].
The similarity between the experimental resultsaoi@d in Groups 2 and 4 demonstrates that
time effects do not play a role in the effectivenes OVA sensitisation, i.e. BHR or a change
in the BALF cellular profile was not detectable 4420 days after the first OVA injection.
The wide variety in the experimental models useth@se previous studies may explain this
controversy. It is possible that ragweed and gpoatien extracts induce stronger stimuli to the
immune system than does OVA [35]. Furthermore, linfiammation and BHR have been
provoked by a single OVA aerosol in highly inbredo®n-Norway rats [36, 40]. Since
genetic differences influence the expression obraplex immune disease [56, 57], it seems
plausible that the Wistar rats used in the presamty do not develop a detectable BHR or
airway inflammation after a single OVA inhalation contrast with a more susceptible

immune system in Brown-Norway rats.
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Previous results obtained following multiple inttadaal challenges with an allergen are not
much more uniform either. Lack of effects [53], siae BHR and/or airway inflammation
[36-38, 40, 58], or the absence of BHR despite asma inflammatory cell influx [59] have
all been reported following chronic inhalation dfetallergen in various mammals. The
current results clearly demonstrate the infiltnated inflammatory cells into the BALEFig.

8), which was associated with statistically detea@diHR from the repeated MCh challenges
(Fig. 7). It is noteworthy, however, that while the chro@W¥A inhalation in Group 4 affected
the BALF parameters markedly, its effects on thehM@luced airway responses could be
statistically detected only by applying a statestitest utilising a repeated experimental
design. This finding demonstrates the need for rdpeated study design to clarify the
consequences of allergen exposure that obviousigrgees highly variable changes in the
immune system of the individual animals.

It has been well established that antigen stimediruit and activate eosinophils [36, 37].
These cells play a key role in the pathogenesiBdR by producing bronchoactive
mediators, which participate in the developmentagivay inflammation [36, 37, 60].
Repeated measurements within the same rat revéa¢dhe decreases in Rgand the
increase in the number of eosinoplifsy. 9) were always associated in the animals in Group
4 where BHR developed. This finding confirms thathe current model of BHR, repeated
antigen inhalation acts as a chronic stimulus fdtammatory cell infiltration into the
airways. This phenomenon was manifested in markehephilia, similar to results observed
in human subjects with asthma [61], which was ¢tyedetectable in the repeated partial
BALF. Repeated ip injection of the allergen alomet® combination with a single inhalation
challenge with OVA was not sufficient to triggerchua mechanism in the present animal
model. Although this observation is in contrasthwtevious results demonstrating eosinophil
influx and BHR even after a single aerosol OVA esyre [36], the differences in species and
in rat strains may readily explain this apparemttaoversy, as described above.
Examinations of lung tissue specimens from intridpeeally administered LPS rats showed
two characteristic histological alterations. Predwntly BALT hyperplasia was detected,
together with the less characteristic DAD. Addiafy, we observed emphysema in
almost all animals. These two different histopatatal entities (DAD and BALT) indicate
that a double reaction may develop in responsen® siimulus. We anticipate that the
responses to endotoxin antigen insults depend weraefactors (species, dose, mode of
delivery, timing, type of toxin, etc.). The currdiridings have a potential for developing an

approach that allows fully automatic measuremenBALT and inflammatory changes by
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combining the present technique with recent quatnté methods [62-64]. The present rat
model is not only suitable for the investigationamiute alterations, such as ALI/ARDS, but
also allows an assessment of the pulmonary consegsi@f a chronic inflammatory process
leading to BALT hyperplasia and emphysema.

OVA challenge caused chronic bronchitis with allerghanifestations by histopathology.
After OVA treatments, all of the inflammatory cell&re increased in the lung tissue not only
peribronchial, but perivascular localisation. Thessults parallel with literature data, in
which similar inflammatory cell invasions were rej@al in OVA sensitised rodents (mice and
rats) [65-67]. However, in our study the numbethedf eosinophil cells was not significantly
more, compared with other cell types including lyrapytes and plasma cells. This result is
acceptable, because continuous human and expeamahigtopathologic investigations
evidenced that the presence of cellular populationthe asthmatic airways is a result of a
general inflammatory response caused by varioustyqes [68, 69]. Renzi and co-workers
examined the inflammatory cell populations in thevays and parenchyma after antigen
challenge in the rat. They have found that the asgEke antigen challenge significantly
increased the cellular yield (mostly neutrophilgni the large and small airways and lung
parenchyma [70].

Particularly notable are the data of Cokugras andiarkers who examined biopsy specimens
from children. They registered eosinophilia in Iurggue in one case of ten. In the other nine
cases, the submucosa was infiltrated with lymphescji1].

As many opened question are to relate in natureession of asthma, these individual
asthmatic rat model may serve the research of aeuss well as late phase of asthma
(remodelling, change of smooth muscle alteratigis), not only in point of BAL fluid

cellular profile and lung tissue mechanics, bub afshistopathology.
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6. CONCLUSIONS

In conclusion, a method has been developed thawvsHtollow-up of the BAL fluid cell count
and airway and tissue mechanics in rats withoutausing the animals. There was no long-
term effect of the repeated measurement technigjuéise cell number, on the cellular profile
or in the respiratory mechanics.

By application of the prepared method, the systemdiministration of LPS allows the early
detection of ALI in the BAL cellular profile and spiratory mechanics, even in a relatively
mild form. Moreover, the combination of BAL and riovasive assessment of airway and
tissue mechanics permits the detection of emphywemaarenchymal damage without the
need for a terminal histological investigation.

The follow-up of the BALF cell counts and airwaydatissue mechanics in rats provides the
effects of different OVA treatment protocols on theng responsiveness and on the
inflammatory markers within the same rat. Repeatednjections of OVA alone or its
combination with a single inhalation of the allangdo not alter the lung reactivity to MCh
and have no effect on the BALF cellular profile.itver, following chronic inhalation of
OVA, the self-controlled study design provided expental evidence of the strong
association between the airway hyperreactivity xogenous constrictor stimuli and the
number of eosinophils in the BALF.

On the basis of histopathological results, the itfsiced rat model is not only suitable for
the investigation of acute alterations, such agARDS, but also allows an assessment of the
pulmonary consequences of a chronic inflammatoogess leading to BALT hyperplasia and
emphysema. The OVA treatment resulted in generabnoh inflammation with allergic
characterisation in rat lung. This result corresjgmhwith earlier experimental and human
histological investigations.

In this way, our individual rat model couluk expendable to further follow-up of chronic
respiratory diseases, including asthma bronchiale.
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